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The distribution of the relaxation times as seen by bond fluctuation model
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a b s t r a c t

The structural relaxation process of an amorphous polymer has been simulated using the Bond Fluc-
tuation Model with a quite simple description of the polymer system. The glass transition, that is
apparent when a cooling ramp is simulated, comes as a consequence of chain connectivity and a bond
length potential. Annealing of the system at temperatures below the glass transition, in the glassy state,
produces a continuous decrease of the total energy of the system at a rate that depends on temperature.
The energy evolution is shown to be clearly nonexponential in a certain temperature interval. In this
temperature interval, molecular mobility was characterized using different definitions of the relaxation
times and calculating a distribution of relaxation times in the system by studying the motions of small
regions of the lattice. As annealing temperature decreases the distribution of relaxation times shifts to
longer times and slightly broadens. The maxima of the distributions of relaxation times obey the Vogel,
Fulcher and Tammann equation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Cooperative conformational rearrangements of the chain
segments in polymeric materials are responsible for the glass
transition and structural relaxation process (the process by
which a out of equilibrium glass approach equilibrium at
constant temperature and pressure). Cooperativity is respon-
sible for the curvature of the logarithm of the relaxation time
versus reciprocal temperature curve, the Arrhenius plot, that
represents the temperature dependence of the response rate of
the material at temperatures above its glass transition. On the
other hand, the relaxation processes due to conformational
cooperative motions of the polymer segments are shown to be
nonexponential and its kinetics can be described with
a formalism of a distribution of relaxation times [1,2]. A certain
correlation between nonexponentiallity and cooperativity, i.e.,
between the width of the distribution of relaxation times and
the curvature of the Arrhenius diagram, has been reported in
the literature [3].
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The glass transition and structural relaxation of a polymer have
been simulated using the Bond Fluctuation Model (BFM) [4]. The
behaviour of the polymer system in this model is determined by
chain connectivity and both intermolecular and intramolecular
energy potentials. The role of each of them on conformational
mobility was shown in reference [5]. The glass transition is
apparent when a cooling ramp is simulated. Annealing of the
system at temperatures below the glass transition, in the glassy
state, produces a continuous decrease of the total energy of the
system at a rate that depends on temperature. Free volume is
another key factor in the system dynamics below the glass transi-
tion [6,7,8].

In most cases, both experimental and simulation structural
relaxation results show only the time dependence of average
values of the magnitudes of interest in the system. In particular
molecular mobility can be characterized using different defini-
tions of the relaxation times. The information contained in these
average values is necessary and sufficient for the study of the
system in thermodynamic equilibrium, but may not be enough if
the study should be extended to the dynamics of systems out of
equilibrium, such as a glass. In this work a simple polymer
system consisting of chains of 10 polymer segments and
considering only a bond length intramolecular potential is
studied. The simulations conducted with the BFM allow us to
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obtain directly both the evolution of average magnitudes during
structural relaxation and, through the study of the movements
of small regions, a distribution of relaxation times can be
determined at different temperatures as well, allowing for
a more complete characterization of the simulated segmental
dynamics.

2. Model hypothesis and simulations

One of the most frequently employed models to simulate the
polymeric materials behaviour is the Bond Fluctuation Model
[4,9]. Every three carbons of a polymeric chain as, for example,
polyethylene can be represented by a monomeric group that
occupies the eight vertex of a cube on the lattice [10]. The length
of the bonds between monomeric groups can vary between 2
and
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is not allowed in order to avoid bond
crossing [11]).

The simulation steps consist of choosing randomly a monomeric
group and one of the six possible directions of movement. If the
resulting distances for the involved bonds are allowed by the model
and the volume exclusion is respected then the movement is
considered as geometrically viable. In order to include a thermo-
dynamic factor, the movement is finally performed with the
probability of the metropolis criterion [11,12],

P ¼ min
�

1; exp
�
�DE
kT

��
(1)

In this expression DE is the increase of energy caused by the eval-
uated movement, k is Boltzmann’s constant and T is the tempera-
ture of the system. The potential employed in this work is the well
known bond length potential [10,13]

UðlÞ [ U0ðl L l0Þ2

where the minimal energy distance is given by l0¼ 3 lattice units
and U0¼1.

The simulation parameters consisted of a three dimensional
simulation box (L¼ 40) with periodic boundary conditions. This
system was occupied by 400 chains formed by 10 monomeric
groups, giving a density 4¼ 0.5.

The simulations begun with an initial equilibration period of 105

Monte Carlo Steps (MCS) at high temperature kT¼ 5, followed by
a cooling ramp at a constant rate of�0.1 units of temperature every
1000 MCS. After this cooling ramp, an annealing during 107 MCS at
different temperatures was performed in order to observe struc-
tural relaxation. These parameters have shown in our previous
works that are adequate to simulate the glass transition and the
structural relaxation process [5,7,8].

Some variables were calculated during simulations. First of all,
the energy of the system for different temperatures was averaged in
order to observe the evolution of the system. The squared radius of
gyration [10] was calculated too as
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where N is the number of monomeric groups of the chains, r!cm is
the position of the centre of mass of the chain and r!i is the position
of every group i of the chain. And the squared end-to-end distance
as

D
R2

ee
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In order to analyze the structure of the system, the pair corre-
lation function of the system was calculated [14] as
gðrÞ ¼ 2L3HðrÞ
2

(5)

ðNPÞ hðrÞ

where H(r) represents the histogram that counted the number of
times that an allowed distance r occurs, h(r) corresponds to the
number of possible r-vectors for a given distance on the lattice, L is
the box simulation size and NP is the total number of monomeric
groups.

The autocorrelation functions of the polymer’s end-to-end
distance and of the radius of gyration have been calculated to study
their decay, as [10]
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Three time correlation functions were calculated too [10]. A time
correlation function in order to study the evolution of the inner
molecular groups in the system,

g1ðtÞ ¼
Dh

r!N=2ðtÞ � r!N=2ð0Þ
i2E

(8)

a time correlation function in order to study the evolution of the
inner groups compared to the centre of mass of the chain,

g2ðtÞ ¼
Dh

r!N=2ðtÞ � r!cmðtÞ � r!N=2ð0Þ þ r!cmð0Þ
i2E

(9)

and a time correlation function in order to study the evolution of
the centre of mass of the system,

g3ðtÞ ¼
D
½ r!cmðtÞ � r!cmð0Þ�2

E
(10)

Related to these functions, three relaxation times can be defined. A
relaxation time s1, in order to represent the evolution of the inner
molecular groups in the system [10], as

g1ðs1Þ ¼
D

R2
g

E
(11)

A relaxation time s2, in order to study the evolution of the inner
groups compared to the centre of mass of the chain [10], defined as

g2ðs2Þ ¼
2
3
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E
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And a relaxation time s5, in order to study the evolution of the
centre of mass of the system, as

g3ðs5Þ ¼
D

R2
g

E
(13)

Apart from the average values, all the relaxation times were
calculated independently for every molecule taking into account its
own evolution. These calculations offered the possibility of building
the form of the distribution of the relaxation times, obtaining
a more accurate representation of the evolution of the system
depending on time. By tracking each single polymer chain during
simulations, the distributions of relaxation times ri(s) were
obtained at different states. These distributions are calculated as
the fraction of groups (or chains) that have relaxed individually at
the MCS equal to si (defined above). From the first dump of data for
each isothermal relaxation (after 102 or 104 MCS), the relaxed
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fractions are grouped for logarithmic scale plot into intervals of
2n� 102 MCS for n¼ 0, 1, 2.
100 104 106 108

40

60

80

100

MCS
E

ne
rg

y

Fig. 2. Nonexponential isothermal relaxation of the system energy at temperature
kT¼ 0.07.
3. Results and discussion

The system evolution during the isothermal annealing on a wide
temperature interval has been obtained by simulation with the
BFM. The system energy rapidly decreases with decreasing
temperature for 1/kT lower than 5 during the cooling scan, and then
bends in the glass transition to reach steady values at the lowest
temperatures of the simulation. Fig. 1 shows also the energy values
attained when the cooling ramp is stopped at a given annealing
temperature and then the system relax isothermally for different
times up to 107 MCS. In that figure, three different regions can be
distinguished: for values of 1/kT¼ 5 or smaller, the system is or
reaches the equilibrium during the first 104 MCS of the isothermal
stage; between 1/kT¼ 5 and 50 there is a continuous energy
decrease during annealing between 104 and 107 MCS, and at
1/kT¼ 50 and above (results not shown) the system energy does
not change during 107 MCS.

The energy decay approaching an equilibrium state is a wide,
nonexponential relaxation process as shown in Fig. 2 for the
kT¼ 0.07 isotherm, covering more than six time decades. The pair
correlation function shows that the system remains in an amor-
phous state at equilibrium and during annealing at the same
temperature kT¼ 0.07 (Fig. 3), without any significant structural
change. The peak in g(r) at distance 3, that remains constant during
the relaxation at kT¼ 0.07, is higher than at kT¼ 5 because distance
3 corresponds to the minimum energy bond distance, so this bond
length is favoured at low temperatures. The g(r) plots calculated at
different time instants during the structural relaxation process
nearly superimpose.

The time correlation functions gi and the radius of gyration Rg

were calculated during the isothermal relaxations. The squared
radius of gyration remains fairly constant around 16 squared units
of length, which corresponds to an average end to end distance
around 10 units and a Kuhn length around 3 units: the chains are
flexible. The displacement of the inner groups relative to the centre
Fig. 1. Energy evolution at different temperatures during the 107 MCS isothermal
ageing (dots), from the states on a cooling ramp from kT¼ 5.0 to kT¼ 0.01 (upper dots).
Lines are joining the isochronal states. Thick line corresponds to 104 MCS.
of mass (CM), g2, shows an asymptotic behaviour to the value of the
squared radius of gyration.

The autocorrelation functions of the polymer’s end-to-end
distance and of the radius of gyration have been calculated (Eqs. (6)
and (7)). The scaled autocorrelations overlap quite well, as expected
[10], when plotted against g3ðtÞ=CR2

eeD, drawing a stretched expo-
nential with a stretching parameter around 0.7 and following the
time–temperature superposition property.

The coordinates of every single group and chain were tracked
during the simulations to determine if they fulfil the relaxation
conditions. With this method there have been measured the
following distributions of relaxation times: r1(s), representing the
mobility of the inner groups (Eq. (11)), was calculated from the
fraction of groups that, at each time interval i between the MCS
Ti¼ si and Tiþ1¼2si, moved a distance equal to the radius of
Fig. 3. Pair correlation function in equillibrium at kT¼ 5 (thick line) and during the
isothermal relaxation at kT¼ 0.07, at the initial step and after 104, 105, 106 and 107 MCS
(broken lines).
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gyration; r2(s), showing the mobility of the inner groups relative to
the chain CM (Eq. (12)), and r5(s), representing the mobility of the
chains in the lattice (Eq. (13)), were calculated by a similar method.
This calculations needs to follow the spatial evolution of the poly-
mer chains for a broad time interval (106 MCS in this work). In
equilibrium states this can be easily performed within the 107 MCS
of our isothermal stages, and even at the final stages of annealing in
the temperature range of the transition. Thus, Fig. 4 shows the
results of these distributions of relaxation times for kT ranging
between 0.09 and 0.4 (2.5�1/kT� 11). As temperature decreases
the distribution of relaxation times shifts to longer times as
expected but, interestingly enough, it slightly broadens. Experi-
mental data of relaxation processes due to conformational
Fig. 4. Distributions of the relaxation times s1 (up), s2 (centre) and s5 (down)
(symbols) during isotherms at kT¼ 0.09 (black circles), kT¼ 0.11 (black squares),
kT¼ 0.13 (black diamonds), kT¼ 0.15 (black triangles), kT¼ 0.18 (black upside down
triangles), kT¼ 0.23 (white circles), kT¼ 0.28 (white squares), kT¼ 0.33 (white dia-
monds), and kT¼ 0.40 (white triangles) and their fits to gaussian functions (lines).
rearrangements of the polymer chains such as viscoelastic or
dielectric relaxations shows a behaviour very close to thermo-
rheological simplicity, i.e., a shift of the distribution of relaxation
times without shape change when varying temperature above the
glass transition [2]. The distribution looks symmetrical and quite
narrow for what can be found in experimental viscoelastic or
dielectric data. Roughly speaking the width at half height of the
peak would correspond to a value of the parameter b of the
stretched exponential or Kohlrausch–Williams–Watts equation
[15,16] around 0.8–0.9. These values are on the upper part of the
typical range between 0.3 and 0.8. This is not strange due to the
simplicity of the description of the system, with very short chains
and without any intermolecular interaction parameter, but anyway
shows the dispersity of the neighbourhood of the polymer chains in
the system. The broadening of the distributions as the temperature
decreases corresponds to a slight variation of parameter b with
temperature. More studies are necessary to correlate the shape of
the distribution with the characteristics of the model system. This
would help also, by choosing the right parameter values, to map the
model to specific polymers.

The maxima of the distributions of relaxation times follow the
Vogel, Fulcher and Tammann [17,18] (VFT) equation, with a value of
kT0¼ 0.03 and values of the relaxation times at infinite temperature
between 3000 and 104 MCS for all the three relaxation times studied
(Fig. 5). The value of kT0¼ 0.03 defines the temperature where
the relaxation times becomes infinitely large. With good approxi-
mation, this temperature agrees with what is found with the
simulated isothermal relaxations: at kT¼ 0.02 there is no energy
evolution at all during 107 MCS. The curvature of the log10(s/MCS)
versus 1/kT curve calculated from the simulated segmental
dynamics is quite apparent and it must be considered a consequence
of the cooperativity in the conformational rearrangements.

Unfortunately, many difficulties arose when trying to apply
a similar method to determine the distribution of relaxation times
in intermediate instants of the isothermal structural relaxation
process at lower temperatures. Those distributions have been
calculated at three different times for 106 MCS each one. The first
stage begins with the relaxation, the second starts at 5�106 MCS
and the third reaches the end from 9�106 MCS. The calculation
could only be performed at quite high temperatures, kT¼ 0.1 and
kT¼ 0.15, and then there is a significant evolution of the state of the
system only during the first 106 MCS needed for the calculation,
thus the results are not very significant. The distributions of
relaxation times do not vary significantly as the annealing time
increases during isothermal structural relaxation. The shape of the
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Fig. 5. Maxima of the distributions of relaxation times s1 (circles), s2 (squares) and s5

(diamonds), and their fits to the VFT equation (lines).



Fig. 6. Distribution of relaxation times s2 during three different intervals of 106 MCS:
at the beginning (circles), after the first half (squares) and at the end (diamonds) of the
isothermal relaxations during 107 MCS at kT¼ 0.10 (up) and 0.15 (down).
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distribution seems to remain unchanged (Fig. 6). It would be
interesting to see if the distributions of relaxation times shift to
longer times as the system evolves. To study the possible shift we
would have to calculate the distributions at lower temperatures,
where the relaxation is slower and the three time intervals cited
correspond to clearly different states. But at such low temperatures
the distribution vanishes for relaxation times below 106 MCS. And
longer simulations only supply more information on equilibrium
states. New definitions of relaxation times may be needed to obtain
the distributions from shorter MCS intervals.

Nevertheless, the equilibrium distribution of relaxation times
analysis obtained from the simulations can be used as a tool to
compare directly the model to the experimental. From the width of
the distributions of relaxation times, the stretching parameter b can
be calculated as well. And from the dependence of the maxima of
the distributions with temperature, the Vogel, Fulcher and Tam-
mann parameters are easily obtained. Compared to the analysis
based on the autocorrelation functions, it seems more sensitive to
small variations of the width of the distribution of relaxation times
with temperature, so also to that of the stretching parameter b.
4. Conclusions

The results of coarse grained simulations such as the BFM used,
allow reproducing and studying phenomena similar to that occur in
out of equilibrium systems such as amorphous materials in the
glass transition region. The results of the simulations have provided
information on correlation functions of interest on the individual
processes of movement of the chains and their groups.

The monitoring of the movement processes of each molecule
provides important information about the system: distributions of
relaxation times of the system in equilibrium states have been
calculated and even for a quite simple polymer model the simula-
tion reproduces some of the features shown in the relaxation
experiments that probes segmental dynamics. As temperature
decreases the distribution of relaxation times shifts to longer times
and slightly broadens. The maxima of the distributions behave
according to the VFT equation. The extension of this analysis to
determine the evolution of the distributions of relaxation times
during structural relaxation is not easy, in fact it has been possible
to determine it in a short temperature interval within the glass
transition. In these temperatures the shape of the distribution do
not vary significantly as the annealing time increases.
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